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Elasticity of Poissonian fiber networks
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An effective-medium model is introduced for the elasticity of two-dimensional random fiber networks.
These networks are commonly used as basic models of heterogeneous fibrous structures such as paper. Using
the exact Poissonian statistics to describe the microscopic geometry of the network, the tensile modulus can be
expressed by a single-parameter function. This parameter depends on the network density and fiber dimen-
sions, which relate the macroscopic modulus to the relative importance of axial and bending deformations of
the fibers. The model agrees well with simulation results and experimental findings. We also discuss the
possible generalizations of the model.

PACS numbd(s): 62.20.Dc, 81.40.Jj

[. INTRODUCTION to be able to bear load. Closegg one finds a scaling regime
similarly to other transport properties than elasti¢@} and
The effective-medium model is a standard approach foonly eventually, for high enough coverage> p., the linear
estimating the elastic properties of inhomogeneous materialgegime sets in. Such phenomena can also be reproduced ex-
One simply considers in the mean-field sense a representgerimentally in laboratory-made paper, showing that indeed
tive volume element, and its response to mechanical pertuiy,>p.. The old effective-medium theory of Cdd1], the
bations. Such models are often successful if the structure ofCox model,” and the “shear-lag model[12] that is based
the material is simple enough. A more complicated approachn it, have been used to explain Eq). The Cox model
is to consider variational bounds. They are dependent on thgssumes a shear-lag mechanism in which the stress of a ma-
statistical properties of the medium throulypoint correla-  trix is gradually transferred to the fiber so that the stress is
tion functions. There have been some efforts to describe variargest in the middle and reduced at the ends of the fibers.
ous media via their three-point correlations since the latteFor low coverages the stress is not able to build up, and thus
relate directly to variational estimates of the elastic modulia lower stiffness arisef5,4]. The Cox-type models suffer,
[1]. Practical examples abound of materials that are structuhowever, from several discrepancies. The value obtained for
ally inherently heterogeneoug.g., granular materials and p, is much smaller than in reality, ang is also predicted to
fiber composites For such materials the standard effective-depend on the average fiber lengith Also, the value of the
medium theory is doubtful, and there is no easy way to exmodulusA is reproduced, at most, qualitativel§0,5]. The
press the structural correlations in a useful manner. failures of the shear-lag model result from the assumed
In this paper we introduce an effective-medium model forstress-transfer mechanism that seems to be wibad], al-
the tensile stiffness of materials that are composed of ranthough the variation in the average stress with respect to
domly connected building blocks. For clarity we will not fiber orientation is most likely corre¢t,5].
concentrate on the generic model, but on two-dimensional |n this paper we demonstrate that the problems related to
(2D) random networks of fibers. Such fiber networks arethe Cox and shear-lag models can be eliminated with a re-
commonly used as a basic model of random fibrous materialgrmulated effective-medium model. We use the same
such as paper or glass-fiber mé2s-8]. This application of  coarse-grained deformation field as in the Cox model. The
the generic model gives us the possibility to test the approximean-field approximation is, however, done at the discrete
mative solution against numerical solutions. Extensions tgiber-segment level since, in a fiber network, the stresses are
other systems would depend on the geometry of these sygansferred among segments at the fiber-to-fiber crossings.
tems and on the elastic behavior of their building blocks. Thus we consider the segments as the basic building blocks
The tensile modulus, or stiffness, of 2D random fiber net-of the system, and take into account their length distribution
works obviously increases with increasing the areal masgnd assume that each segment is deformed in the energeti-
densityp (coveragg which measures the number of fibers cally most favorable mode depending on its orientation and
per unit area. Computer simulatiofsee e.g.[4,5]) reveal |ength. It is exactly this coupling between the geoméssg-
that the stiffnessk,) is asymptotically a linear function ¢f  ment length and the deformation mode that makes the
such that model nontrivial and improves on, e.g., the Cox model. The
arguments used are not specific for random fiber networks
Ee(p)=A(p=po), (1)  and are, in fact, far more general. All random materials that
can be viewed as sets of random points connected by elastic
wherepy andA are constants to be determined. The former isvector potentials at a rather low coordination numaesr will
related naturally to the geometrical percolation threshgld be explained in detail beloware possible to model in a simi-
since the network has to be geometrically connected in orddar fashion.
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In Sec. Il we define a random fiber network and describavhich should be multiplied with the displacement vector
the numerical techniques used. In Sec. Il we outline the newX1,Y1,Q01,X2,Y2,Q02) to obtain the forces acting on the
effective-medium model. In the last two sections we com-bonds at the segment end§.Y, and() correspond to hori-
pare the results of the modified effective-medium model withzontal, vertical, and rotation displacements, respectively, and
those of the numerical model, and finish with a summary. the numbers 1 and 2 refer to the two bonds. In the following
we assume for simplicity that the fibers have a square cross
section of ared =w?, which means thadt=w%/12. The stiff-
ness matrix is only valid whew<|. For shortl the bending

A random fiber network is defined as a set of indepenstiffnessz“/I3 should, as a first approximation, be replaced
dently deposited short line segments on a two-dimensiondly the shear modullgw?/[2(1+ »)I], wherev is the Pois-
plane. In the simplest case both the locations of the cente$Pn ratio.
of mass and the orientation angles of the fibers are uniformly In the numerical model we construct samples of random
distributed throughout the plane, and the fiber length is confiber networks according to the rules described above. We
stant. At a very low average number of fibers per unit aredimit the size of the network to a rectangular surface of size
(i.e., at a low coveragethe fibers do not form a connected LxLy, and thex andy coordinates of the centers of mass of
network. With increasing coverage the system reaches ithe fibers are chosen from uniform distributions in the inter-
geometrical percolation threshold at approximatgly=5.7  vals[ —L,L,+L¢] and[O,L,]. The orientation of the fibers
fibers per unit aredfiber length is unity [13]. Another im- ~ are chosen from a uniform distribution in the interval
portant threshold is the so called rigidity-percolation thresh{ — 7/2,7/2]. We allow fibers to fall outside the box in order
old (g,¢). If the connections between the fiber-to-fiber bondsto avoid a lower coverage at the boundaries. The intersection
were central-force springs, a geometrically connected netpoints of the fibers are identified, and the stiffness matrix of
work would not necessarily have a nonzero stiffness. Athe entire network is then constructed. This is done by rota-
central-force random fiber network consists of both rigiéd ~ tions of the segment stiffness matrices by the in-plane angle
angles of segmentsand nonrigid (more than three-sided ©Of each segment and by adding the matrix elements corre-
polygong substructures. The rigid substructures are, howsponding to the same degree of freedom. Periodic boundary
ever, always elastically isolated as the coordination numbegonditions are used in the verticaldirection, and all fibers
of the bonds never exceeds 4. Random spring networks haw@ossing the linex=0 andx=L; are clamped at the cross-
thus zero stiffness for any finite coveraf®14], i.e., q,. NG points. The clamped right boundary of the network is
— . This means that the stiffness of random fiber networkghen forced to move a unit distance in the positive horizontal
relies completely on the nonzero stiffness of all deformatiordirection, while the left boundary is forced to remain at its
modes of the individual fiber segments and not only of theoriginal location. The equilibrium displacement of all bonds
axial mode. is calculated by the conjugate gradient method. The elastic

In our numerical work the fibers are assumed to be rigidlystiffness of the network can thereafter be extracted. The equi-
bonded at each fiber-fiber crossing. This means that when tH#rium displacement of a small network is shown in Fig. 1.
network is deformed, the angles between crossing fibers will
remain constant and elastic strain will all be in the fiber
segments between the bonds. There are three degrees of free-
dom for each fiber-fiber bond: horizontal displacement, ver- In the effective-medium model we do not describe the
tical displacement, and rotation. The elastic interaction befibers as distinct units in the network, nor the stress along
tween two connected bonds is defined by a stiffness matriXibers by, e.g., formulating a differential equation description
If the Young’s modulus of a fiber segment of lendtis E,  of the stress-transfer such as in the Cox model. Such at-
the fibers have a cross-sectional afeand the moment of tempts would make the segment stresses correlated along the
inertia of the cross section is then the stiffness matrix is fibers with the reduced stress close to the fiber ends. Instead,

Il. RANDOM FIBER NETWORKS

Ill. EFFECTIVE-MEDIUM MODEL

given by we only consider the stress on the individual segments. We
then use as input the fiber-segment-length probability distri-
EA EA bution. This distribution is known for randoifPoissoniah
—_ 0 0 - 0 0 line networks, and a similar approach can obviously be ap-
I l plied in any disordered system in which the structural distri-
12E1 6EI 12El  6El bution of the constituents of the system is available. We
0 e N 0 T I 7 combine this distribution with the argument that the fiber
segments deform only in the energetically most favorable
0 E E 0 _ 6EI E mode (the modes are bending, stretching, and sheariimg
12 I I I this way we can derive a “universal” stiffness curve of the
EA EA : random fiber network as a function of a single dimensionless
- 0 0 —_ 0 0 parameter. This parameter is proportional to the dimension-
I I less coverage multiplied by the ratio of the fiber width to
12E1 6EI 12E| 6EI fiber length (all fibers are assumed identitaWhen the
N 0 = 7 width-to-length ratio vanishes the fiber segments behave as
central-force springs which only “bend.” In the opposite
6EI 2El 0 _@ E limit only uniform-strain deformations are possiblee.,

shearing and stretching as opposed to bending
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basic building blocks of the systems. If all fibers in the net-
work are deposited without correlations, the segment-length

7,

,
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RN
‘ b} N distribution is a one-dimensional Poisson process for which
K the length distribution is given by

2q 29
U(l)_ﬂ'LfeXF(_ﬂ'Lfl)’ (2)
wherelL; is the fiber length ang is the dimensionless cov-

erage. The average segmentlis (7L/2q). There is, of
course, a cutoff in the distribution &t , but for largeq (i.e.,
for g>q., whereq, is the geometrical percolation critical
point) this can be neglected for simplicity.

The elastic energy of a fiber network is the sum of the
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fé\‘i‘,ﬁ:\ﬁ\ _l‘é},%:g\\\‘?"“\w‘\ “m segment is its stiffness multiplied by the square of its dis-
’W\'{/ /am‘!‘}b?ﬁ \ placement magnitude. We can thus calculate the elastic en-
A Sy 7 = :é\i,‘ "}}(.\ ergy of a network by multiplying the stiffness of a particular

deformation mode and the square of the deformation in that
mode. We then multiply this with the dimension of the net-
FIG. 1. A random fiber network with/q.=4.0. The thick lines  \york and with the segment-length probability distribution,
show the unstrained network, and the thin lines the deformed netyq then integrate everything over the range for which the
work. particular mode is energetically the most favorable. The re-
sult including all three deformation modes is
In quasistatic deformation the fiber segments are de-

formed such that there is force equilibrium at all fiber-fiber Ew? , L,L, 2 cog(h) le2q9
L . : . = 2 y do | =Zel-2ali(=Lly]
bonds. These points in t_he d|splacemen_t s_[ﬁaee displace- ) €4 L Jowp w o 7Ly
ments of bondsalso define the global minimum of the total
elastic energy. This means that the fiber segments will, in Gw? , L, (72 coS(6)sir?(6)
general, be deformed in a way that offers the least elastic T &d Ly ) - do
resistance. The segments can be deformed either by bending/
shearing or by stretching. As defined by the stiffness matrix le 2q (= 21/(L)] Ew? , Lxby
above, the bending stiffness modulusBsv*/I%, the shear Xfo L rdlt - sa

stiffness modulus iEW?/[2(1+ v)l], and the elongation

stiffness modulus i€w?/1. Most important here is that the =12 cog( 6)sirf(6) * 2q

bending modulus depends on the ratifl in a different way Xf fl

than the other two moduli. We now assume that a segment

deforms only by bending if the bending modulus is smaller €)

than both the shear and the elongation modulus, i.e., the . ) ) ) .

segment ha$>I.=w\2(1+ ). If I<I, the segments are wheree, is the external strairl, L is the dl_menS|on of theT

assumed to deform by shearing and stretching. Notice thdl€™Work, andG=E/[2(1+v)]. The essential parameter in

the goodness of this approximation is related to the lack ofd- (3) is z=2qlc/(7Ls). The last integral is an

rigidity in the central-force fiber networks. Close to or above&xPonential-integral function and cannot thus be expressed in

a rigidity threshold the segments would not be able toterms of elementary functiongE,(z)=J e™*/x"dx]. By

“choose” so freely their deformation modes based only onsolving all the other integrals we obtain an expression for the

their own orientation and length. In random fiber networkselastic energy (V) of the network as a function aff andg.

this is a minor problem for the reasons outlined in Sec. 110N the other handW=(1/2)EcezL,L,, which means that

(triangles are not rigidly connected we can get an expression for the stiffness of the network
The above assumption is not enough to determine théEe) as a function ofw and g. The result forE, can be

stiffness of the network. We still need a way to quantify theexpressed in the form

magnitude of the displacements that take place. For this we

Jel-2almLlgy,

— /2 a C7T|_f

choose the displacement field of the Cox model as it seems _szq 2qw\*(e”? £

to well describe the displacements of the segments as a func- e 8Ly |lawLs) \z 1(2)

tion of their orientation. That is, elongation of a segment is

proportional to co¥6), while bending and shear are propor- n ( 34 (1-e?) (4)
tional to cos@)sin(#), where 6§ is the angle between the di- 2(1+v) ’

rection of the external strain and the considered fiber seg-

ment. The effective-medium strain field does not include anylhis equation is our first main result. We can test it by first

rotations. considering the limitw—0. By rescaling the network stiff-
The final ingredient in our model is the segment-lengthnessE.—E./w? whenw—0, the network will become a

distribution, which we need when using the segments as theentral-force network. Equatiofd) then givesE.,xcw—0,
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which is consistent with the lack of rigidity for central-force 10000
networks. The opposite limit is achived whgr-o, which A G=4qC o

means that w/i—o. Equation (4) then gives E, q=60C -+~
xEw?q/L;. In the high coverage limit, the stiffness of the 1000
network is simply proportional t& multiplied by the density
of fiber material in the network. That is, the network behaves
as an elastic continuum. Since the network is Poissonian, al~
density fluctuations vanish at infinite coverage and, conse-Z
quently, it is quite natural that the network becomes an elas-
tic continuum in this limit.

In Eg. (3) we have, however, assumed that all segments 10}
are deformed. Below the critical density of percolat®nis
zero, and no segments are deformed because the network

not connected. Aboveg. there are also segments that carry 1 . . . . N N
no load. At high densities such segments only appear at eac 0 0.05 01 0.15 02 025 03 035 04 045 05
end of the fibers with a density of(~0.55);) independent '

of q [4]. The simplest possible transformation franio the 0.3

density of loaded fiber segments)) is given by g/q.
=q,/9.+0.55+0.45/(g,;/q.+1). This equation is just a
simple crossover fromq=q. when =0, to g,—q
—0.55, in the limit whenq, and g approaches infinity. In
Eg. (3) we can thus replace the firgton the right-hand side 0.1}

by q,

ot i i 22 5

0.2}

50
S
s Of
[m]

2 g c qc 0.1}

With this replacemenE, vanishes atj=q., as it should.
In the limits of both a large and a vanishiggEg. (3) can 0.2t
be written in the form of a series expansion, but for practical
purposes it is best to approximate the exponential-integra -0.3 . s : : , :
function by a rational approximatig5] 2 15 41 05 0 05 f 15 2

0
2 -z -z
rtazta e e FIG. 2. (@) The segment-length distributions favg.=4 and
E.(z)= T te(z)—. 6 . 2. g gth distributions fayq, an
1(2) 22+ biz+b, z &(2) z ©) g/q.=6. The numerical distributions are compared with E2).

(unnormalizedl (b) The average transverggending deformations
where a;=2.3347, a,=0.2506, b;=3.3307, b,=1.6815, [D,=sin(¢)cos@)] and the average axiéklongation deformations
and|e(z)|<5x107°. [D,=cog(6)], and the average rotati¢fil(#)] as a function of the

If we finally definez asz=2q,l./(7L), and insert it orientation angles.
together with Eq(5) in Eqg. (4), we arrive at a rather simple
expression foE, as a function of, w, g, andL;. Areduced displays the average orientation distribution of the displace-
network stiffnessE,=16y2(1+ v)E./(Eww) can now be ments compared with the Cox model displacement field. In

written in a universal one-parameter form, Figs. 3a) and 3b) we show the probability distribution of
the relative bending deformatiopp,/(D,+ D) ] as a func-
£ (22 2 e_‘z_ c (z)) tion of the segment lengtH ). In Fig. 3a) the fiber width is
nETA2(1+ ) 2z 1 w=0.01, and in Fig. @), w=0.04. The assumption of a

step-function crossover fro®,/(D,+D,)=0 to D,/(D,
@ +Dp)=1 atl, is, of course, too simple to be exact, but it
' nevertheless describes the qualitative behavior of the defor-
mations as evidenced by the plots. Bending deformations
dominate wherw=0.01. It is only for the very shortest seg-
ments that pure axial defomati¢®,/(D,+Dy)=0] has a
To test the validity of the effective-medium solution peak in the distribution. For the broader fibers the axial-
we consider separately all the major ingredients in thedeformation peak is larger and extends to longer segments.
model: the exponential length distribution of the segmentsThe crossover to bending deformation is also slower than for
the Cox model displacement fielD,=sin(d)cos@),D, the slender fibers. Based on this figure one can draw the
=cog(6),Q(#)=0], and the assumption that fiber segmentsconclusion that the crossover from pure bending to pure
are deformed by bending if they are longer tHanand by  shearing/stretching has a more complicated behavior than the
stretching and shearing if they are shorter thanin Fig.  simple step function used in the effective-medium model. To
2(a) we show the numerical segment-length distributions forobtain a quantitative agreement between the model solution
g=4g. andgq=6q, in comparison with Eq(2). Figure Zb)  and the numerical simulationk, should thus be treated as a

+(3 (1—e?

MY

IV. COMPARISON OF RESULTS
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(A)w=0.01
1.0
0.75 5o

=

o
05 <

o
0.25 FIG. 3. The probability distri-

bution of the relative bending de-

formation [Dy,/(D,+D,)] as a
function of the fiber segment
lengthl. The data are normalized
separately for all fiber segment
lengths, and are shown both as
contours and as surfacesw
=0.01 in(a), andw=0.04 in (b);
a/q.=4.

§ . . . 0
0 0025 005 0.075 041
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fitting parameter. It then plays a role that is rather similar totheir counterparts as calculated from Hd). Notice that
that of the Debye frequency in the specific heat of latticethere has been no fitting of any parameters in Fig. 4, which
phonons. Figures 1-3 nevertheless demonstrate that all tmeeans that the model results and the simulation results from
separate assumptions in the effective-medium solution are, tie literature are in excellent agreement. In our model solu-
a satisfactory degree, verified by the numerical simulationstion, E.¢; decreases anid increases a bit faster with increas-
The only noteworthy deviation is, as metioned above, theng w than in the simulations. This is not surprising since, as
somewhat more complicated behaviorl pf already noted, a quantitative agreement with the effective-
We now continue by comparing the network stiffness ofmedium solution and the numerical simulations can only be
the effective-medium model with numerical simulations. Forobtained by fittingl.w. One has to notice also that, of the
rather small values of), i.e., for g=~10q, or less,E. is a data presented in Fig. 4, only two points with the lowkst
nonlinear function ofg/q.. For g~q., E. increases more value were simulated for an exactly similar setup. The dif-
rapidly than linearly, and for largeythe stiffness approaches ference lies in the fiber-to-fiber bonds, which were for the
a linear dependence om Earlier computer-simulation re- other three points taken to be “elastic,” that is the fibers
sults forg/q.<10 were fitted with expressions of the form were connected with flexible, springlike bond elements. In
Ec.=Eqti(a/g.—K) [4,5,16. The resulting values oE.;;  contrast we have used stiff bon@see also Sec. )l The two
andK from these simulations are in Fig. 4 compared withsimulations with stiff bonds are fow=0.06 andw=0.01,

0.6 r r r r r T 3

055} ‘Rule of thumb’ —
05l model ¢-
OO N simulations +

045}
04}

5
u” 035}
03}
025}
0.2}
0.15}
0.1 N N N N N L
15 2 2.5 3 35 4 45 5

K Y9

FIG. 4. E¢¢; as a function ofK: the values given by Eq4) FIG. 5. A comparison of the model resultmes) with w’ fitted

(mode), published finite element method simulatidssnulations, and the simulation resultdmarkers; w=0.01,0.06, andw’
and the “rule of thumb” of Ref[5]. =0.024,0.06.
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P 1.6 . '
e q/qc=5,w=0.01 + X
0.2} w=0.05 + // 1 1.4} qlge=5w=006x == |
w=0.06 x p g/qc=3,w=0.06 ¥ = " L.
w=007 x ~ 12} da=3w=001m
0.15} w=0.08 @ V'(/E 1 ]
ul *x I
ol /x/ | w®0.8
e Lk
("Fx* d’
0.05} X | 0.4}
xa
/ 0.2}
X
0 i L L L L o = N N . .
0 0.1 0.2 0.3 0.4 05 0.6 0.5 0.6 0.7 0.8 0.9 1
z a
FIG. 6. E, versusz as given by Eq(7), and simulation results FIG. 7. E. versus bonding probability; g/q.=3,5, andw
for w=0.05,0.06,0.07,0.08. =0.01,0.06.
V. SUMMARY

while the model solutions in Fig. 4 are fow
=0.06,0.05,0.04,0.03,0.02,0.01, from left to right. In any The description obtained for random fiber networks with
case, Eqg.(4) gives quite correct values fak unlike the the effective-medium theory presented here can also be com-
shear-lag model which gives too small valjés pared with experiments. By measuring the tensile modulus of
As mentioned above, we modify E¢3) by using the paper made from pulp fibers of different lengths, it has been
integration limitl, as a fitting parameter. In practice we re- found [10] that the stiffness of paper sheets is of the form
placew in I, by w', and then use the latter to fit the simu- Ee(p) =A(p— po), wherep=w?q/L;, andA andp, are con-
lation results. The final comparison between the simulatior$tants. In contrast with this, the Cox or the shear-lag model
and the model results is given in Fig. 5. The best fits werdJives a stiffness of the forie(p) =B(p—p'/L;), wherep’
obtained byw’ =0.024 forw=0.01 and byw' =0.06 forw is a constant. .Equatlo@) is also ne;arly Ilnear, except clpse
=0.06. By extending the simulations to oth&y we found to g=(c (cf. Figs. 5 and & R%placm_gq with p in the defi-
that the fitted integration limif, can be expressed dg  Mition of z gives z=2lqp/(mw"), which is obviously inde-

_ BTN T , pendent ofL;. We find, therefore, that Eq4) is consistent
Eq(o.((;f)ilvi;‘ Or'lgtg)edZ(floJrr ngmi rrll%armvsv;h gtoicor:(r)(\el\cl:éeenrto with experiments with respect to changesLin, unlike the

the universal form seems to work well as is evident from Fi Cox and shear-lag models.
5 universalform seems to work weli as Is evi '9- We can conclude by summarizing the main results in a

: ) ) ) , . more general form. We have introduced a modified effective-
The effective-medium model is easily modified to accountyedium model for the elasticity of inherently heterogeneous
for random fiber networks which are composed of diff- materials. It is based on using the bonds that are formed
erent types of fibers. The model can furthemore handigetween the points where the building blocks of the material
changes in the local density of fibers as far as they takere joined together as the basic variables. That is, the micro-
place on length scales of the order of single fiber segmentscopic geometry of the networks, for which statistical prop-
That is, as far as the locations of the segments are conerties are often available, is taken into account. The model is
pletely random, and the texture of the network is completelytested on two-dimensional random fiber networks and is
described by the segment-length distribution. A good exfound to work reasonably well. This means that the behavior
ample of this kind of extension of the model is that to aof the model agrees well with that found from numerical
variable degree of bonding. It was assumed above that afimulations and also that discrepancies between theory and
fiber crossings are bonded. If only a fractioa) (of them  experiments could be avoided and explained. The model can
were bonded, the segment-length distribution would chang@ct as a theoretical foundation for investigating, e.g., changes
to (1) = 2aq/ (L) exd — 2¢/(rL,)al], which would modify N t.he_tensne modulus as the texture of a heterogeneous ma-
z andz, and thereby the network stiffness. A comparison ofterial is altered.
calculated and simulated stiffnesses of networks with a vary-
ing bonding probabilitya is shown in Fig. 7 fog/q.=3 and
g/g.=5, andw=0.01,w=0.06. Obviously there is a fairly We acknowledge discussions with K. Niskanen and sup-
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