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Elasticity of Poissonian fiber networks
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An effective-medium model is introduced for the elasticity of two-dimensional random fiber networks.
These networks are commonly used as basic models of heterogeneous fibrous structures such as paper. Using
the exact Poissonian statistics to describe the microscopic geometry of the network, the tensile modulus can be
expressed by a single-parameter function. This parameter depends on the network density and fiber dimen-
sions, which relate the macroscopic modulus to the relative importance of axial and bending deformations of
the fibers. The model agrees well with simulation results and experimental findings. We also discuss the
possible generalizations of the model.

PACS number~s!: 62.20.Dc, 81.40.Jj
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I. INTRODUCTION

The effective-medium model is a standard approach
estimating the elastic properties of inhomogeneous mater
One simply considers in the mean-field sense a represe
tive volume element, and its response to mechanical pe
bations. Such models are often successful if the structur
the material is simple enough. A more complicated appro
is to consider variational bounds. They are dependent on
statistical properties of the medium throughN-point correla-
tion functions. There have been some efforts to describe v
ous media via their three-point correlations since the la
relate directly to variational estimates of the elastic mod
@1#. Practical examples abound of materials that are struc
ally inherently heterogeneous~e.g., granular materials an
fiber composites!. For such materials the standard effectiv
medium theory is doubtful, and there is no easy way to
press the structural correlations in a useful manner.

In this paper we introduce an effective-medium model
the tensile stiffness of materials that are composed of
domly connected building blocks. For clarity we will no
concentrate on the generic model, but on two-dimensio
~2D! random networks of fibers. Such fiber networks a
commonly used as a basic model of random fibrous mate
such as paper or glass-fiber mats@2–8#. This application of
the generic model gives us the possibility to test the appr
mative solution against numerical solutions. Extensions
other systems would depend on the geometry of these
tems and on the elastic behavior of their building blocks.

The tensile modulus, or stiffness, of 2D random fiber n
works obviously increases with increasing the areal m
densityr ~coverage!, which measures the number of fibe
per unit area. Computer simulations~see e.g.,@4,5#! reveal
that the stiffness (Ee) is asymptotically a linear function ofr
such that

Ee~r!5A~r2r0!, ~1!

wherer0 andA are constants to be determined. The forme
related naturally to the geometrical percolation thresholdrc
since the network has to be geometrically connected in o
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to be able to bear load. Close torc one finds a scaling regime
similarly to other transport properties than elasticity@9# and
only eventually, for high enough coverager@rc , the linear
regime sets in. Such phenomena can also be reproduce
perimentally in laboratory-made paper, showing that inde
r0.rc . The old effective-medium theory of Cox@11#, the
‘‘Cox model,’’ and the ‘‘shear-lag model’’@12# that is based
on it, have been used to explain Eq.~1!. The Cox model
assumes a shear-lag mechanism in which the stress of a
trix is gradually transferred to the fiber so that the stress
largest in the middle and reduced at the ends of the fib
For low coverages the stress is not able to build up, and t
a lower stiffness arises@5,4#. The Cox-type models suffer
however, from several discrepancies. The value obtained
r0 is much smaller than in reality, andr0 is also predicted to
depend on the average fiber lengthL f . Also, the value of the
modulusA is reproduced, at most, qualitatively@10,5#. The
failures of the shear-lag model result from the assum
stress-transfer mechanism that seems to be wrong@5–7#, al-
though the variation in the average stress with respec
fiber orientation is most likely correct@4,5#.

In this paper we demonstrate that the problems relate
the Cox and shear-lag models can be eliminated with a
formulated effective-medium model. We use the sa
coarse-grained deformation field as in the Cox model. T
mean-field approximation is, however, done at the discr
fiber-segment level since, in a fiber network, the stresses
transferred among segments at the fiber-to-fiber crossi
Thus we consider the segments as the basic building blo
of the system, and take into account their length distribut
and assume that each segment is deformed in the ener
cally most favorable mode depending on its orientation a
length. It is exactly this coupling between the geometry~seg-
ment length! and the deformation mode that makes t
model nontrivial and improves on, e.g., the Cox model. T
arguments used are not specific for random fiber netwo
and are, in fact, far more general. All random materials t
can be viewed as sets of random points connected by el
vector potentials at a rather low coordination number~as will
be explained in detail below! are possible to model in a simi
lar fashion.
5550 ©2000 The American Physical Society
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PRE 61 5551ELASTICITY OF POISSONIAN FIBER NETWORKS
In Sec. II we define a random fiber network and descr
the numerical techniques used. In Sec. III we outline the n
effective-medium model. In the last two sections we co
pare the results of the modified effective-medium model w
those of the numerical model, and finish with a summary

II. RANDOM FIBER NETWORKS

A random fiber network is defined as a set of indep
dently deposited short line segments on a two-dimensio
plane. In the simplest case both the locations of the cen
of mass and the orientation angles of the fibers are unifor
distributed throughout the plane, and the fiber length is c
stant. At a very low average number of fibers per unit a
~i.e., at a low coverage! the fibers do not form a connecte
network. With increasing coverage the system reaches
geometrical percolation threshold at approximatelyqc'5.7
fibers per unit area~fiber length is unity! @13#. Another im-
portant threshold is the so called rigidity-percolation thre
old (qrc). If the connections between the fiber-to-fiber bon
were central-force springs, a geometrically connected
work would not necessarily have a nonzero stiffness.
central-force random fiber network consists of both rigid~tri-
angles of segments! and nonrigid ~more than three-sided
polygons! substructures. The rigid substructures are, ho
ever, always elastically isolated as the coordination num
of the bonds never exceeds 4. Random spring networks h
thus zero stiffness for any finite coverage@8,14#, i.e., qrc
→`. This means that the stiffness of random fiber netwo
relies completely on the nonzero stiffness of all deformat
modes of the individual fiber segments and not only of
axial mode.

In our numerical work the fibers are assumed to be rigi
bonded at each fiber-fiber crossing. This means that when
network is deformed, the angles between crossing fibers
remain constant and elastic strain will all be in the fib
segments between the bonds. There are three degrees o
dom for each fiber-fiber bond: horizontal displacement, v
tical displacement, and rotation. The elastic interaction
tween two connected bonds is defined by a stiffness ma
If the Young’s modulus of a fiber segment of lengthl is E,
the fibers have a cross-sectional areaA, and the moment of
inertia of the cross section isI, then the stiffness matrix is
given by

¨

EA

l
0 0 2

EA

l
0 0

0
12EI

l 3

6EI

l 2 0 2
12EI

l 3

6EI

l 2

0
6EI

l 2

4EI

l
0 2

6EI

l 2

2EI

l

2
EA

l
0 0

EA

l
0 0

0 2
12EI

l 3 2
6EI

l 2 0
12EI

l 3 2
6EI

l 2

0
6EI

l 2

2EI

l
0 2

6EI

l 2

4EI

l
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which should be multiplied with the displacement vect
(X1,Y1,V1,X2,Y2,V2) to obtain the forces acting on th
bonds at the segment ends.X, Y, andV correspond to hori-
zontal, vertical, and rotation displacements, respectively,
the numbers 1 and 2 refer to the two bonds. In the follow
we assume for simplicity that the fibers have a square c
section of areaA5w2, which means thatI 5w4/12. The stiff-
ness matrix is only valid whenw! l . For shortl the bending
stiffnessEw4/ l 3 should, as a first approximation, be replac
by the shear modulusEw2/@2(11n) l #, wheren is the Pois-
son ratio.

In the numerical model we construct samples of rand
fiber networks according to the rules described above.
limit the size of the network to a rectangular surface of s
LxLy , and thex andy coordinates of the centers of mass
the fibers are chosen from uniform distributions in the int
vals @2L f ,Lx1L f # and@0,Ly#. The orientation of the fibers
are chosen from a uniform distribution in the interv
@2p/2,p/2#. We allow fibers to fall outside the box in orde
to avoid a lower coverage at the boundaries. The intersec
points of the fibers are identified, and the stiffness matrix
the entire network is then constructed. This is done by ro
tions of the segment stiffness matrices by the in-plane an
of each segment and by adding the matrix elements co
sponding to the same degree of freedom. Periodic bound
conditions are used in the verticaly direction, and all fibers
crossing the linesx50 andx5L f are clamped at the cross
ing points. The clamped right boundary of the network
then forced to move a unit distance in the positive horizon
direction, while the left boundary is forced to remain at
original location. The equilibrium displacement of all bon
is calculated by the conjugate gradient method. The ela
stiffness of the network can thereafter be extracted. The e
librium displacement of a small network is shown in Fig.

III. EFFECTIVE-MEDIUM MODEL

In the effective-medium model we do not describe t
fibers as distinct units in the network, nor the stress alo
fibers by, e.g., formulating a differential equation descripti
of the stress-transfer such as in the Cox model. Such
tempts would make the segment stresses correlated alon
fibers with the reduced stress close to the fiber ends. Inst
we only consider the stress on the individual segments.
then use as input the fiber-segment-length probability dis
bution. This distribution is known for random~Poissonian!
line networks, and a similar approach can obviously be
plied in any disordered system in which the structural dis
bution of the constituents of the system is available. W
combine this distribution with the argument that the fib
segments deform only in the energetically most favora
mode ~the modes are bending, stretching, and shearing!. In
this way we can derive a ‘‘universal’’ stiffness curve of th
random fiber network as a function of a single dimensionl
parameter. This parameter is proportional to the dimens
less coverage multiplied by the ratio of the fiber width
fiber length ~all fibers are assumed identical!. When the
width-to-length ratio vanishes the fiber segments behave
central-force springs which only ‘‘bend.’’ In the opposit
limit only uniform-strain deformations are possible~i.e.,
shearing and stretching as opposed to bending!.
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In quasistatic deformation the fiber segments are
formed such that there is force equilibrium at all fiber-fib
bonds. These points in the displacement space~i.e., displace-
ments of bonds! also define the global minimum of the tot
elastic energy. This means that the fiber segments will
general, be deformed in a way that offers the least ela
resistance. The segments can be deformed either by ben
shearing or by stretching. As defined by the stiffness ma
above, the bending stiffness modulus isEw4/ l 3, the shear
stiffness modulus isEw2/@2(11n) l #, and the elongation
stiffness modulus isEw2/ l . Most important here is that th
bending modulus depends on the ratiow/ l in a different way
than the other two moduli. We now assume that a segm
deforms only by bending if the bending modulus is sma
than both the shear and the elongation modulus, i.e.,
segment hasl . l c[wA2(11n). If l , l c the segments are
assumed to deform by shearing and stretching. Notice
the goodness of this approximation is related to the lack
rigidity in the central-force fiber networks. Close to or abo
a rigidity threshold the segments would not be able
‘‘choose’’ so freely their deformation modes based only
their own orientation and length. In random fiber networ
this is a minor problem for the reasons outlined in Sec
~triangles are not rigidly connected!.

The above assumption is not enough to determine
stiffness of the network. We still need a way to quantify t
magnitude of the displacements that take place. For this
choose the displacement field of the Cox model as it se
to well describe the displacements of the segments as a f
tion of their orientation. That is, elongation of a segment
proportional to cos2(u), while bending and shear are propo
tional to cos(u)sin(u), whereu is the angle between the d
rection of the external strain and the considered fiber s
ment. The effective-medium strain field does not include a
rotations.

The final ingredient in our model is the segment-leng
distribution, which we need when using the segments as

FIG. 1. A random fiber network withq/qc54.0. The thick lines
show the unstrained network, and the thin lines the deformed
work.
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basic building blocks of the systems. If all fibers in the n
work are deposited without correlations, the segment-len
distribution is a one-dimensional Poisson process for wh
the length distribution is given by

s~ l !5
2q

pL f
expS 2

2q

pL f
l D , ~2!

whereL f is the fiber length andq is the dimensionless cov
erage. The average segment isl̂ 5(pL f /2q). There is, of
course, a cutoff in the distribution atL f , but for largeq ~i.e.,
for q@qc , whereqc is the geometrical percolation critica
point! this can be neglected for simplicity.

The elastic energy of a fiber network is the sum of t
elastic energy of the fiber segments. The elastic energy
segment is its stiffness multiplied by the square of its d
placement magnitude. We can thus calculate the elastic
ergy of a network by multiplying the stiffness of a particul
deformation mode and the square of the deformation in
mode. We then multiply this with the dimension of the ne
work and with the segment-length probability distributio
and then integrate everything over the range for which
particular mode is energetically the most favorable. The
sult including all three deformation modes is

W5
Ew2

2
ex

2q
LxLy

L f
E

2p/2

p/2 cos4~u!

p
duE

0

l c 2q

pL f
e[ 22ql/(pL f )]dl

1
Gw2

2
ex

2q
LxLy

L f
E

2p/2

p/2 cos2~u!sin2~u!

p
du

3E
0

l c 2q

pL f
e[ 22ql/(pL f )]dl1

Ew4

2
ex

2q
LxLy

L f

3E
2p/2

p/2 cos2~u!sin2~u!

p
duE

l c

` 2q

pL f l
2 e[ 22ql/(pL f )]dl,

~3!

whereex is the external strain,LxLy is the dimension of the
network, andG5E/@2(11n)#. The essential parameter i
Eq. ~3! is z[2qlc /(pL f). The last integral is an
exponential-integral function and cannot thus be expresse
terms of elementary functions@En(z)[*1

`e2zx/xndx#. By
solving all the other integrals we obtain an expression for
elastic energy (W) of the network as a function ofw andq.
On the other hand,W5(1/2)Eeex

2LxLy , which means that
we can get an expression for the stiffness of the netw
(Ee) as a function ofw and q. The result forEe can be
expressed in the form

Ee5
Ew2q

8L f
F S 2qw

pL f
D 2S e2z

z
2E1~z! D

1S 31
1

2~11n! D ~12e2z!G . ~4!

This equation is our first main result. We can test it by fi
considering the limitw→0. By rescaling the network stiff-
nessEe→Ee /w2 when w→0, the network will become a
central-force network. Equation~4! then givesEe}w→0,

t-
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PRE 61 5553ELASTICITY OF POISSONIAN FIBER NETWORKS
which is consistent with the lack of rigidity for central-forc
networks. The opposite limit is achived whenq→`, which
means that w/ l̂ →`. Equation ~4! then gives Ee
}Ew2q/L f . In the high coverage limit, the stiffness of th
network is simply proportional toE multiplied by the density
of fiber material in the network. That is, the network behav
as an elastic continuum. Since the network is Poissonian
density fluctuations vanish at infinite coverage and, con
quently, it is quite natural that the network becomes an e
tic continuum in this limit.

In Eq. ~3! we have, however, assumed that all segme
are deformed. Below the critical density of percolationEe is
zero, and no segments are deformed because the netwo
not connected. Aboveqc there are also segments that ca
no load. At high densities such segments only appear at e
end of the fibers with a density ofp('0.55qc) independent
of q @4#. The simplest possible transformation fromq to the
density of loaded fiber segments (ql) is given by q/qc
5ql /qc10.5510.45/(ql /qc11). This equation is just a
simple crossover fromq5qc when ql50, to ql→q
20.55qc in the limit whenql and q approaches infinity. In
Eq. ~3! we can thus replace the firstq on the right-hand side
by ql ,

ql5
qc

2 H q

qc
21.551F S 1.552

q

qc
D 2

24S 12
q

qc
D G1.2J . ~5!

With this replacementEe vanishes atq5qc , as it should.
In the limits of both a large and a vanishingq, Eq. ~3! can

be written in the form of a series expansion, but for practi
purposes it is best to approximate the exponential-inte
function by a rational approximation@15#

E1~z!5
z21a1z1a2

z21b1z1b2

e2z

z
1«~z!

e2z

z
, ~6!

where a152.3347, a250.2506, b153.3307, b251.6815,
and u«(z)u,531025.

If we finally definezl as zl[2ql l c /(pL f), and insert it
together with Eq.~5! in Eq. ~4!, we arrive at a rather simple
expression forEe as a function ofE, w, q, andL f . A reduced
network stiffnessEr[16A2(11n)Ee /(Ewp) can now be
written in a universal one-parameter form,

Er~z!5zlF z2

2~11n!S e2z

z
2E1~z! D

1S 31
1

2~11n! D ~12e2z!G . ~7!

IV. COMPARISON OF RESULTS

To test the validity of the effective-medium solutio
we consider separately all the major ingredients in
model: the exponential length distribution of the segmen
the Cox model displacement field@Db5sin(u)cos(u),Da
5cos2(u),V(u)50#, and the assumption that fiber segme
are deformed by bending if they are longer thanl c , and by
stretching and shearing if they are shorter thanl c . In Fig.
2~a! we show the numerical segment-length distributions
q54qc andq56qc in comparison with Eq.~2!. Figure 2~b!
s
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displays the average orientation distribution of the displa
ments compared with the Cox model displacement field
Figs. 3~a! and 3~b! we show the probability distribution o
the relative bending deformations@Db /(Da1Db)# as a func-
tion of the segment length (l ). In Fig. 3~a! the fiber width is
w50.01, and in Fig. 3~b!, w50.04. The assumption of a
step-function crossover fromDb /(Da1Db)50 to Db /(Da
1Db)51 at l c is, of course, too simple to be exact, but
nevertheless describes the qualitative behavior of the de
mations as evidenced by the plots. Bending deformati
dominate whenw50.01. It is only for the very shortest seg
ments that pure axial defomation@Db /(Da1Db)50# has a
peak in the distribution. For the broader fibers the axi
deformation peak is larger and extends to longer segme
The crossover to bending deformation is also slower than
the slender fibers. Based on this figure one can draw
conclusion that the crossover from pure bending to p
shearing/stretching has a more complicated behavior than
simple step function used in the effective-medium model.
obtain a quantitative agreement between the model solu
and the numerical simulations,l c should thus be treated as

FIG. 2. ~a! The segment-length distributions forq/qc54 and
q/qc56. The numerical distributions are compared with Eq.~2!
~unnormalized!. ~b! The average transverse~bending! deformations
@Db5sin(u)cos(u)# and the average axial~elongation! deformations
@Da5cos2(u)#, and the average rotation@V(u)# as a function of the
orientation angleu.
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FIG. 3. The probability distri-
bution of the relative bending de
formation @Db /(Db1Da)# as a
function of the fiber segmen
length l. The data are normalized
separately for all fiber segmen
lengths, and are shown both a
contours and as surfaces;w
50.01 in ~a!, andw50.04 in ~b!;
q/qc54.
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fitting parameter. It then plays a role that is rather similar
that of the Debye frequency in the specific heat of latt
phonons. Figures 1–3 nevertheless demonstrate that al
separate assumptions in the effective-medium solution ar
a satisfactory degree, verified by the numerical simulatio
The only noteworthy deviation is, as metioned above,
somewhat more complicated behavior ofl c .

We now continue by comparing the network stiffness
the effective-medium model with numerical simulations. F
rather small values ofq, i.e., for q'10qc or less,Ee is a
nonlinear function ofq/qc . For q;qc , Ee increases more
rapidly than linearly, and for largerq the stiffness approache
a linear dependence onq. Earlier computer-simulation re
sults for q/qc,10 were fitted with expressions of the for
Ee5Ee f f(q/qc2K) @4,5,16#. The resulting values ofEe f f
and K from these simulations are in Fig. 4 compared w

FIG. 4. Ee f f as a function ofK: the values given by Eq.~4!
~model!, published finite element method simulations~simulations!,
and the ‘‘rule of thumb’’ of Ref.@5#.
o
e
the
to
s.
e
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their counterparts as calculated from Eq.~4!. Notice that
there has been no fitting of any parameters in Fig. 4, wh
means that the model results and the simulation results f
the literature are in excellent agreement. In our model so
tion, Ee f f decreases andK increases a bit faster with increa
ing w than in the simulations. This is not surprising since,
already noted, a quantitative agreement with the effecti
medium solution and the numerical simulations can only
obtained by fittingl c}w. One has to notice also that, of th
data presented in Fig. 4, only two points with the lowestK
value were simulated for an exactly similar setup. The d
ference lies in the fiber-to-fiber bonds, which were for t
other three points taken to be ‘‘elastic,’’ that is the fibe
were connected with flexible, springlike bond elements.
contrast we have used stiff bonds~see also Sec. II!. The two
simulations with stiff bonds are forw50.06 andw50.01,

FIG. 5. A comparison of the model results~lines! with w8 fitted
and the simulation results~markers!; w50.01,0.06, andw8
50.024,0.06.
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PRE 61 5555ELASTICITY OF POISSONIAN FIBER NETWORKS
while the model solutions in Fig. 4 are forw
50.06,0.05,0.04,0.03,0.02,0.01, from left to right. In a
case, Eq.~4! gives quite correct values forK unlike the
shear-lag model which gives too small values@5#.

As mentioned above, we modify Eq.~3! by using the
integration limit l c as a fitting parameter. In practice we r
placew in l c by w8, and then use the latter to fit the sim
lation results. The final comparison between the simulat
and the model results is given in Fig. 5. The best fits w
obtained byw850.024 forw50.01 and byw850.06 for w
50.06. By extending the simulations to otherw, we found
that the fitted integration limitl c can be expressed asl c

5(0.68w10.016)A2(11n). This means that a correction t
Eq. ~7! is needed for smallw. For w.0.04, however,
the universal form seems to work well as is evident from F
6.

The effective-medium model is easily modified to accou
for random fiber networks which are composed of di
erent types of fibers. The model can furthemore han
changes in the local density of fibers as far as they t
place on length scales of the order of single fiber segme
That is, as far as the locations of the segments are c
pletely random, and the texture of the network is complet
described by the segment-length distribution. A good
ample of this kind of extension of the model is that to
variable degree of bonding. It was assumed above tha
fiber crossings are bonded. If only a fraction (a) of them
were bonded, the segment-length distribution would cha
to s( l )52aq/(pL f)exp@22q/(pLf)al#, which would modify
z andzl and thereby the network stiffness. A comparison
calculated and simulated stiffnesses of networks with a va
ing bonding probabilitya is shown in Fig. 7 forq/qc53 and
q/qc55, andw50.01,w50.06. Obviously there is a fairly
good agreement between the two sets of results.

FIG. 6. Er versusz as given by Eq.~7!, and simulation results
for w50.05,0.06,0.07,0.08.
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V. SUMMARY

The description obtained for random fiber networks w
the effective-medium theory presented here can also be c
pared with experiments. By measuring the tensile modulu
paper made from pulp fibers of different lengths, it has be
found @10# that the stiffness of paper sheets is of the fo
Ee(r)5A(r2r0), wherer[w2q/L f , andA andr0 are con-
stants. In contrast with this, the Cox or the shear-lag mo
gives a stiffness of the formEe(r)5B(r2r8/L f), wherer8
is a constant. Equation~4! is also nearly linear, except clos
to q5qc ~cf. Figs. 5 and 6!. Replacingq with r in the defi-
nition of z gives z52l cr/(pw2), which is obviously inde-
pendent ofL f . We find, therefore, that Eq.~4! is consistent
with experiments with respect to changes inL f , unlike the
Cox and shear-lag models.

We can conclude by summarizing the main results in
more general form. We have introduced a modified effecti
medium model for the elasticity of inherently heterogeneo
materials. It is based on using the bonds that are form
between the points where the building blocks of the mate
are joined together as the basic variables. That is, the mi
scopic geometry of the networks, for which statistical pro
erties are often available, is taken into account. The mode
tested on two-dimensional random fiber networks and
found to work reasonably well. This means that the behav
of the model agrees well with that found from numeric
simulations and also that discrepancies between theory
experiments could be avoided and explained. The model
act as a theoretical foundation for investigating, e.g., chan
in the tensile modulus as the texture of a heterogeneous
terial is altered.
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FIG. 7. Ee versus bonding probabilitya; q/qc53,5, andw
50.01,0.06.
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